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Est imates  of the Standard Deviat ions of the Observed Structure Factors 
and of the Electron Density  from Intensity Data 
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It  is shown that an initial estimate of the standard deviation of the electron density may be ob- 
tained by a straightforward and relatively simple calculation based on estimates of the standard 
deviations of the observed structure factors. These latter estimates are readily obtained from the 
errors, observed and expected, in the intensity data. 

Introduct ion 

In the initial stages of a structure investigation an 
estimate of a(@o), the standard deviation of the elec- 
tron density at the general position x, y, z, would be 
useful for many reasons. Such an estimate, for example, 
would provide the lower limit which the investigator 
might seek in his refinement of the structure. Thus, 
what might be termed 'over-refinement' of the struc- 
ture, i.e. refinement to a point where the resultant 
(~(@c) based perhaps on (Fo-Fc) was significantly 
below that  allowed on the basis of errors in the in- 
tensity data, would not occur. Such over-refinement 
may be possible, particularly if experimental form 
factors and multiple-term anisotropic temperature 
factors are used for each atom in the asymmetric unit. 
Moreover, an initial estimate a(@o) might prevent the 
investigator from attempting the impossible with his 
data:  for example, the principal objective of an in- 
vestigation is the location of hydrogen atoms, and 
(~(@o) is calculated to be 2 e.A-3; in this case, the 
objective very probably cannot be realized without 
more accurate intensity estimates. 

I t  is shown below that  a(@o) may be derived readily 
from estimates of the standard deviations of the ob- 
served structure factors, a(Fo). 

Grouping  of the data 

In a typical three-dimensional X-ray study, intensity 
data are gathered around two crystallographic ~xe~, 
say a and b, and estimated either visually or photo- 
metrically, or else counted electronically. The reflec- 
tions within the limiting sphere may be placed in four 
groups: (I) reflections observed more than once, i.e. 
around both a and b; (II) reflections observed only 
once, i.e. around a but not b, or around b but not a; 
(III) reflections too weak to be observed around either 
axis; (IV) reflections absent because of the require- 
ments of the space group. In general, the majority 
of the reflections will belong to Group I. 

E s t i m a t i o n  of a(Fo) 
Previous estimates of (~(Fo) generally have been quite 
rough: approximations such as a(Fo)= k[Fo] ~ (with 
a usually 0 or 1) have sufficed, however, for the order- 
of-magnitude calculations to which they have been 
applied (see, for example, Lipson & Cochran, 1953). 
That such approximations are indeed rough is in- 
dicated by the familiar observation that  for photo- 
graphic data the Fo's are relatively much less reliable 
at low and at very high F o values than in the inter- 
mediate range. 

In the estimation of Fo and of a(Fo) we face the 
problem of very small sample sizes. We shall assume 
that  our samples are taken from a population which 
is normally distributed (i.e. errors are assumed to be 
random); we shall discuss this assumption below. The 
sample mean is the most efficient, unbiased estimate 
of the population mean regardless of the sample size. 
:By the most efficient estimate is meant the one which 
gives values more closely concentrated around the true 
value than values derived from any other statistic. 
For very small sample sizes other statistics such as the 
mid-range and the median are nearly as efficient as the 
sample mean, but they offer no particular calculational 
advantages. Therefore, we use the sample mean as the 
estimate of the population mean. The situation with 
regard to unbiased estimates of the population stan- 
dard deviation is somewhat different. The sample 
standard deviation may be corrected for bias, and it is 
then the most efficient, unbiased estimate of the popu- 
lation standard deviation. :For very small sample sizes~ 
however, another statistic, the range estimate, is very 
nearly as efficient as the sample standard deviation, 
and it is much more readily computed. Accordingly, 
we adopt the range estimate as the unbiased estimate 
of the population standard deviation a(y); we obtain 

a(y) = c[ymax.--Y~r~nJ, (1) 

where Yma~. is the maximum and Ymm. is the minimum 
of the observed sample values. Tippett (1925) has 
discussed the range estimate at length, and has derived 
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the  coefficient c as a funct ion of n, the sample size. 
Of importance to us are the following values:  n = 2, 
c = 0-89; n = 3, c = 0-59; n = 4, c = 0-49.* For  n = 2, 
the range est imate  is equivalent  to the  sample stan- 
dard  deviat ion corrected for bias. The appl icat ion of 
equat ion (1) to reflections of Group I is obvious: 
For  the usual  case of two observations 2"~ and Fb we 
obta in  

~(Fo) = 0"8912"~--Fb[, (2) 
a n d  

~o = ½(F~+Fb). (3) 

Such est imates assume tha t  both 2"a and Fb are equal ly  
reliable. The applicat ion of an elaborate weighting 
system to calculations based on such small  sample 
sizes does not  seem justified. If, for a par t icular  reflec- 
tion, 2"a is believed to be much  more reliable t han  2"b, 
then  the best policy is p robably  to reject 2"b and con- 
sider tha t  the par t icular  reflection belongs to Group II.  

For  an est imate of cr(Fo) for a par t icular  2"0 in 
Group I I  there seems li t t le choice but  to use a plot 
of average cr(2"o) versus 2"0, based on the  da ta  from 
Group I. 

For Group I I I  reflections one m a y  use Wilson 's  
(1949) distr ibutions of s tructure factors and a method  
similar  to tha t  employed by Hami l ton  (1955) to derive: 

C e n t r i c :  Funobs. ~'~ ½Fmin.(0), I 

I o" (2,unobs.) ~ 2",~n.(0)/12½ ; 2",,~. < ~½ t 

- I " 
Acentric:  2"unob~. ~ 2Fmin. (0), 

a(2"u~obs.) "" 2"~i=.(0)/18½ ; (4) 

Group IV reflections have  cr(2"o) - O. 
The above est imates of a(Fo) are essential ly the  

best tha t  can be made  with the informat ion avai lable  
to us;  yet,  t hey  are unreliable.  For  example,  for 
Group I reflections and n = 2 it  can be shown tha t  
50?/0 of the t ime our es t imate  will lie between 0.40 
and  1.44 t imes the true populat ion s tandard  deviat ion 
(Pearson, 1942). For tunate ly ,  we are usual ly  concerned 
with the combinat ion of these estimates,  for example  
to give an  est imate of a(~o). Under  normal  circum- 
stances we can expect tha t  the relative error in a(Qo) 
will be much less t han  the relative error in any  
indiv idual  es t imate  of ~r(Fo). 

E s t i m a t i o n  a n d  u s e  of  a(~o) 
I t  has been shown (e.g. Cruickshank, 1949, 1950) tha t  
if the errors in 2" are assumed to be random, and if the 

* An  abbrev ia ted  table of e versus n is g iven b y  Dixon  & 
Massey (1951). 

t Equa t ions  (4) will hold  in general ,  i.e. w h e n  Wflson's 
dis t r ibut ions apply ;  in o the r  specific cases the  dis t r ibut ions 
which  differ f rom those of Wilson and  which  arise because of 
the  failure of the  condit ions assumed b y  h im are  known  and  
could be used to derive equat ions  analogous to (4). See Rogers,  
S tan ley  & Wilson (1955) for a s u m m a r y  of references pe r t inen t  
to such distributions. 
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data  are numerous,  we m a y  write the  approximate  
expression 

m 
~(~) = ~ [2: {~(2")}~]~, (5) 

hkl 

where m is 1 for the centric space groups and  2 for the  
acentric ones. Here, a(~) refers to any general  posit ion 
x, y, z; i.e. ~(~) is essential ly independent  of the general  
position x, y, z. Equat ion  (5), when used, is appl ied 
at  the conclusion of a s tructure investigation,  use 
being made  of IFo-Fc[ as an est imate  of a(F) (Cruick- 
shank,  1949). There is no reason, however, why  (5) 
cannot  be applied at the beginning of the  invest igat ion 
to yield the ini t ial  es t imate  a(~o), an est imate  in- 
dependent  of the ref inement,  dependent  only upon the 
in tens i ty  data.  For  the calculation of such an est imate  
we use in (5) a(2"o) as derived above. 

Natura l ly ,  a(~o) cannot  be calculated in e._~ -3 unt i l  
the  in tens i ty  da ta  are on an absolute scale. A scale 
can general ly be found from the in tens i ty  da ta  (e.g. 
Wilson 's  (1942) method),  bu t  in those cases where this 
is not possible, the  calculation of a(Qo) can still be 
made  with profit  after a reliable tr ial  s tructure has 
been found. 

If  a decision is to be reached about  the  possibil i ty 
of locating a par t icular  a tom i (assumed to be in the 
general position x, y, z), then  a(Qo) should be com- 
pared with the expected height  ~(0) at  the center of 
the peak corresponding to a tom i on a Fourier  map.  
Tha t  height  m a y  be calculated from the usual  ex- 
pression 

1 ~.s0 • 
o(O) = ~, j~o f (s)s~ds , (6) 

where f*(s) is the  product  of tempera ture  and  form 
factors, s is (4~r/~t) sin 0, and  s o is the l imit ing value of s. 
An approximate  tempera ture  factor, as guessed from 
those in similar,  known strt~ctures, or as obtained from 
Wilson 's  (1942) method,  should suffice for the cal- 
culation of ~(0). 

As was pointed out in the introduction,  comparison 
of succeeding a(Qc)'s with a(~o) should provide in- 
format ion about  the  state of the ref inement  of the 
structure.  I t  is impor tan t  tha t  such a comparison be 
made  between a(Qc) and  a(~o) only when these are 
calculated with the  same weighting scheme. For  
example,  if a(Q¢) is based on a difference Fourier  in 
which (Fo-Fc) terms are omit ted when 2' 0 is un- 
observed (belongs to Group III) ,  then  the  Group I I I  
reflections should be omit ted from the calculation of 
a(Qo). However, inclusion of such terms in the calcula- 
t ion of the difference Fourier,  and  hence in the  cal- 
culation of ~(Qo), in accordance with equations (4), is 
to be recommended over their  omission. 

D i s c u s s i o n  of  t h e  a s s u m p t i o n  of  r a n d o m  e r r o r s  

I t  m a y  well be argued that ,  contrary to what  has been 
assumed above, the  errors in F o are not  random. This 
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is true. The two or more independent estimates of F o 
for reflections in Group I are not truly independent 
in the case of photographic data, since they depend 
upon the scale factor of each layer, and hence upon 
all of the intensity estimates. With numerous data, 
however, the estimates remain essentially independent. 

Moreover, extinction will not produce random errors. 
The effects of extinction may be removed, at least in 
part, after the structure is known (Vand, 1955), and 
at that  time the initial estimate a(Qo) may easily be 
revised, if necessary. 

Likewise, absorption will not produce random errors: 
a(Fo) will be sensitive to absorption effects. If many 
of the data are affected appreciably by absorption, 
the resultant estimated value of a(Qo) will be signifi- 
cantly high*; this would indicate that  no reasonable 
refinement of the structure is possible, and would 
suggest that  a better method, experimental or theo- 
retical, for the correction or elimination of absorption 
errors is needed. 

Note that  in the usual application of (5) the errors 
in [Fo-Fcl = ~(F) depart from randomness not only 
because of the effects discussed above, but also be- 
cause of the dependence of F c on the proposed struc- 
ture. 

Other initial  e s t imates  

In some cases it may be useful to calculate a{~o(x, y, z)} 
for special x, y, z or a{Qo(x, y)}. The same estimates of 
a(Fo(hkl)} given above (or analogous estimates of 
a{Fo(h/c)}) may be used in equations analogous to (5). 
(For such equations see Cruickshank & Rollett, 1953.) 
Estimates of a(Fo(h/c)}, since they are usually based 
on two readings of the same intensity, are generally 
not as reliable as those of a~Fo(hkl)}. 

These same estimates of a(Fo) may be used in the 
calculation of such quantities as a(3~/~x) which are 
needed for the evaluation of a(x,,) = a(~e/~x)/(~2e/~x~), 
the standard deviation in the x coordinate of the nth 
atom due to errors in the intensity data (Cruickshank, 
1949). However, at the beginning of the investigation 

* This is not true in the rare case of absorption errors 
which are mainly functions of s; such errors occur if the data 
are obtained from a spherical or cylindrical crystal but are 
not corrected for absorption effects. 

a(x,,) is not likely to provide as much useful informa- 
tion as is a(~o). The reliability of such a calculation, 
moreover, is severely limited by lack of knowledge of 
~2~/~,  the central curvature at the center of the 
nth atom. 

The use  of a(Fo) in the l e a s t - s q u a r e s  procedure  

The subject of the least-squares procedure is not 
completely unrelated to the above discussions, for in 
such a procedure where it is desired to minimize the 
function ~ w(hkl)[fFo(hkl)l-I.Fc(hkl)t] ~ the weights 

hkl 

w(h/cl) are properly assigned proportional to 1/a~(Fo). 
The methods of estimating a(.Fo) given above should 
provide weights for the least-squares procedure which 
are less arbitrary and more reliable than those used 
in the past. The contention that  more reliable weights 
are desirable is supported by the recent results of 
Abrahams (1955) which point to the rather large 
effects that  various weighting schemes have on the 
bond lengths derived by the least-squares procedure. 

I wish to thank Prof. V. Schomaker of the California 
Institute of Technology and Mr I). P. Stevenson and 
Mr A. E. Smith of this Laboratory for helpful discus- 
sions. 
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